

RAFAEL MONTEIRO SEIFERT

SOFTWARE PARA A SIMULAÇÃO E TELE-OPERAÇÃO DE UMA

MÁQUINA FERRAMENTA

Monografia apresentada a Escola

Politécnica da Universidade de São

Paulo para a Conclusão de Curso.

São Paulo

2010

RAFAEL MONTEIRO SEIFERT

SOFTWARE PARA A SIMULAÇÃO E TELE-OPERAÇÃO DE UMA

MÁQUINA FERRAMENTA

Monografia apresentada a Escola

Politécnica da Universidade de São

Paulo para a Conclusão de Curso.

Curso de Graduação: Engenharia

Mecatrônica

Orientador: Prof. Dr. Fabrício

Junqueira

São Paulo

2010

Aos meus pais e meus amigos.

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA

ENGENHARIA MECÂNICA/NAVAL DA ESCOLA POLITÉCNICA (EPMN) –

USP.

Seifert, Rafael Monteiro

Software para a simulação e tele-operação de uma máquina
ferramenta / R.M. Seifert. -- São Paulo, 2010.

63 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de São Paulo. Departamento de Engenharia Mecatrônica e de
Sistemas Mecânicos.

1. Maquinas-ferramenta 2. Softwares I. Universidade de São
Paulo. Escola Politécnica. Departamento de Engenharia
Mecatrô-nica e de Sistemas Mecânicos II. t.

Agradecimentos

Ao meu orientador Prof. Dr. Fabrício Junqueira pela sua constante

orientação e pela ajuda nos momentos difíceis do trabalho.

Aos professores da Escola Politécnica da USP, por terem me passado

seu conhecimento e me ensinado a enfrentar desafios.

A toda a minha família pelo carinho e apoio desde sempre.

Aos meus amigos e colegas de graduação pela companhia e amizade

ao longo destes anos.

A todos aqueles que contribuíram de direta ou indiretamente na

produção deste trabalho.

i

Sumário

Lista de Figuras ... iii

Lista de Tabelas ... iv

Resumo .. v

Abstract .. vi

1. Introdução ... 1

1.1. Motivação ... 2

1.2. Objetivo .. 3

1.3. Organização ... 3

2. Revisão Bibliográfica ... 5

2.1. Máquinas CNC ... 5

2.2. Manufatura Virtual e e-Manufacturing .. 10

2.2.1. Manufatura Virtual .. 10

2.2.2. e-Manufacturing ... 14

2.3. Web Services ... 14

2.3.1. Definição .. 14

2.3.2. Arquitetura ... 16

2.3.3. Tecnologias associadas ... 19

2.4. UML .. 22

2.4.1. Arquitetura ... 23

2.4.2. Diagramas .. 24

3. Detalhamento do projeto ... 33

3.1. Arquitetura do software .. 34

3.1.1. Diagrama de casos de uso .. 35

3.1.2. Diagrama de classes ... 36

3.1.3. Diagramas de sequência ... 40

4. Descrição do programa ... 45

4.1. Interface.. 45

4.2. Principais operações .. 47

4.2.1. Verificação de sintaxe .. 47

ii

4.2.2. Execução do programa .. 47

4.3. Procedimento para operação local ... 48

4.4. Procedimento para operação remota ... 49

5. Testes realizados .. 51

5.1. Teste 1 – operação local .. 51

5.2. Teste 2 – operação remota ... 52

6. Conclusões ... 54

Referências Bibliográficas .. 56

iii

Lista de Figuras

Figura 2.1. Torno CNC. ... 6

Figura 2.2. Ambiente da manufatura virtual (PORTO e PALMA, 2000). 13

Figura 2.3. Esquema básico de web service (CERAMI, 2002). 15

Figura 2.4. Principais agentes de um web service (CERAMI, 2002). 17

Figura 2.5. Descrição do sistema de monitoração do status de um pedido

(CERAMI, 2002). ... 18

Figura 2.6. Pilha de protocolos de uma web service (W3C WORKING GROUP

NOTE, 2004). .. 19

Figura 2.7. Especificação de um documento WSDL. .. 20

Figura 2.8. A modelagem da arquitetura de um sistema de software (BOOCH,

RUMBAUGH e JACOBSON, 2005). ... 23

Figura 2.9. Relacionamentos. ... 26

Figura 2.10. Classe: nome, atributos e operações. ... 27

Figura 2.11. Classes avançadas. .. 28

Figura 2.12. Um diagrama de classes. ... 29

Figura 2.13. Atores e casos de uso. ... 29

Figura 2.14. Generalização, inclusão e extensão. .. 30

Figura 2.15. Um diagrama de caso de uso. .. 31

Figura 2.16. Um diagrama de sequência. ... 32

Figura 3.1. Esquema do projeto. ... 33

Figura 3.2. Substituição da máquina virtual pela real. 34

Figura 3.3. Diagrama de Casos de Uso. ... 35

Figura 3.4. Diagrama de Classes. ... 37

Figura 3.5. Diagrama de sequência - Verificar código G. 41

Figura 3.6. Diagrama de sequência - Carregar programa G. 42

Figura 3.7. Diagrama de sequência – Executar código G. 43

Figura 3.8. Diagrama de sequência – Parar operação. 44

Figura 4.1. Interface gráfica do simulador. .. 45

Figura 4.2. Interface web. ... 50

Figura 5.1. Tela do programa após o teste 1. ... 52

Figura 5.2. Tela da página web após o teste 2. .. 53

iv

Lista de Tabelas

Tabela 2.1. Código G pelo Padrão ISO 1056.. 7

Tabela 2.2. Código M pelo Padrão ISO 1056. .. 9

v

Resumo

No contexto do desenvolvimento da internet, o conceito de e-manufacturing,

que possibilita o acesso remoto à máquina ferramenta por meio de uma rede

de comunicação, se torna cada vez mais atraente. Isto permitirá integrar a tele-

operação de uma máquina ferramenta com a possibilidade de emular a

usinagem em um ambiente de manufatura virtual, tornando mais eficiente a

análise e o controle dos fluxos e processos de produção. O objetivo deste

trabalho é a implementação de um software que simule uma máquina CNC e

que permita acesso remoto via internet. O software deve interpretar programas

em código G e permitir sua validação e submissão por meio da rede, assim

como fornecer ao usuário informações quanto às características físicas e a

capacidade de usinagem da máquina. Ainda, ele deve possuir um ambiente

gráfico que simule o processo de usinagem, permitindo o acompanhamento

das operações. No futuro, este trabalho pode servir de base para o

desenvolvimento de sistemas de seleção automática de equipamentos.

Palavras chave: Máquina ferramenta, e-manufacturing, manufatura virtual,

CNC, software.

vi

Abstract

In the context of the recent development of the internet, the concept of e-

manufacturing, which gives the possibility of accessing machine tools remotely

by using a network, becomes increasingly attractive. This will allow tele-

operation to integrate with the emulation of a machining process through virtual

manufacturing, making the analysis and control of production flow and

processes more efficient. The goal of this project is to implement a computer

program which simulates a computer numerically controlled (CNC) machine tool

and enables internet based remote access. The software must compile, validate

and submit a G-code program to the machine. It should also inform the client of

machine capacity and its physical characteristics, as well as present a graphic

interface capable of simulating the machining process, thus permitting the

software to monitor the operations. In the future, this project may provide a base

for the development of automatic machine selection systems.

Keywords: Machine tool, e-manufacturing, virtual manufacturing, CNC,

software.

1

1. Introdução

A manufatura mecânica é a atividade de transformar a matéria prima em

produto acabado. Este produto pode ser um bem final ou intermediário, ou seja,

pode ser utilizado em outros setores da indústria. Esta segunda classe de

produtos é de extrema relevância, dado que a maior parte das indústrias utiliza,

em algum momento, componentes metálicos fabricados por meio de processos

relacionados à manufatura mecânica como: torneamento, fresamento,

forjamento, soldagem ou estampagem, entre outros (ALTINTAS, 2000).

Os processos de usinagem, como torneamento, fresamento e furação,

diferenciam-se pelo fato de que removem material da peça que está sendo

fabricada. O serviço oferecido por máquinas deste tipo apresenta, em geral,

dimensões limitadas pois as máquinas precisam abrigar o material a ser

usinado. Além disso, as operações são repetidas muitas vezes, pois a

produção geralmente é em série e em escala. Estes processos possibilitam a

obtenção de elevada precisão, e o grau de tecnologia empregada é alto. Partes

usinadas alimentam todos os setores industriais, sob a forma de parafusos,

pinos, eixos e processos de melhoria de acabamento, por exemplo (ALTINTAS,

2000) (STOETERAU, 2007).

A partir da década de 50, a qualidade e velocidade das operações de

usinagem foram impulsionadas pelo surgimento e o desenvolvimento de uma

tecnologia que recebeu o nome de NC (Numeric Control), e posteriormente

CNC (Computer Numeric Control). Este foi um grande avanço no sentido de

automatizar a produção e melhorar a qualidade do produto (ALTINTAS, 2000).

Na manufatura de usinagem, a computação se mostrou uma poderosa

ferramenta em vários aspectos, como supervisão de sinais e sensores,

comunicação entre pessoas e entre máquinas, armazenamento de dados,

execução de cálculos, etc. Com a tecnologia CNC, pode-se delegar uma tarefa,

em forma de instruções, a uma máquina ferramenta, tornando a operação livre

da interferência humana.

2

A lista de instruções é escrita numa linguagem conhecida como código

G, padronizada pela ISO (International Organization for Standardization)

(MUNDO CNC, 2008). A sequência de comandos em G é interpretada pela

máquina CNC, que a executa, comando a comando. Só com isso já é possível

reduzir o tempo gasto com a usinagem de uma peça, pois os intervalos entre

as etapas da operação são eliminados. Além disso, para produção em série,

basta trocar a peça a ser usinada e repetir o código. Isto simplificou muito o

trabalho dos operadores e elevou a qualidade do produto por causa da

acurácia obtida.

O código G pode ser interpretado por um programa de computador que

simula virtualmente as etapas da operação e, com isso, é possível identificar

possíveis erros de codificação antes de colocar a peça à prova. Esta simulação

pode, ainda, apresentar de forma gráfica e em tempo real todo o processo de

usinagem de uma peça, para melhor visualização das instruções em linguagem

G (MOLLICA, 2001).

1.1. Motivação

O mercado atualmente é caracterizado por acirrada competição

internacional, por produtos cada vez mais complexos e por grande dinâmica

inovadora. Juntamente com os ciclos de inovação cada vez mais reduzidos, os

ciclos de vida dos produtos e o tempo para lançá-los no mercado são cada vez

menores (PORTO e PALMA, 2000) (SOUZA, et al., 2002).

Considerando esse contexto, juntamente com o grande avanço

tecnológico, cada vez mais as empresas estão buscando novas formas de

alcançar vantagem competitiva e introduzir novos produtos no mercado mais

rapidamente e a um custo menor, como utilizando, por exemplo, o ambiente de

Manufatura Virtual. A idéia é que esse novo ambiente aborde todo o processo

de desenvolvimento, simulação e fabricação do produto, possibilitando a

execução dessas atividades no computador, ou seja, virtualmente, antes de

realizá-las no mundo real, independentemente do grau de complexidade da

forma e da estrutura de um produto (SOUZA, et al., 2002).

3

1.2. Objetivo

A proposta deste trabalho é a implementação um ambiente de

manufatura virtual. Mais especificamente, um sistema computacional capaz de

interpretar código G, verificar sua sintaxe, simular um processo de usinagem e

exibir graficamente o percurso da ferramenta e o status da operação, com o

intuito de simular a disponibilização de máquinas reais na web, como serviços.

Entretanto, devido ao alto custo deste tipo de equipamento, torna-se mais

viável o desenvolvimento de um software que simula seu comportamento, com

base nas informações sobre seu funcionamento e possíveis sinais de sensores.

Com este sistema, é possível a submissão remota de programas e comandos,

bem como a visualização de operações e status.

A ferramenta utilizada para o desenvolvimento de todo o software é o

Microsoft Visual Studio 2010. O programa que representa a máquina virtual foi

codificado em uma estrutura que, posteriormente, poderá ser substituída pela

máquina real com baixo impacto para o restante do código.

Este trabalho possibilitará, no futuro, integrar completamente os níveis

de simulação e fabricação, de forma que, a partir das informações de cada

máquina em uma rede de manufatura, o sistema consiga alocar

automaticamente as tarefas para os equipamentos conectados, otimizando a

utilização destes. Os critérios para isto seriam ocupação ou não do

equipamento e os atributos específicos, como material usinado e velocidade

máxima de avanço, por exemplo.

Com isto, espera-se alcançar uma redução no tempo de entrega,

acelerando a produção. Isto seria obtido graças ao alto grau de automação do

sistema, que poderia tomar decisões de seleção de equipamento. Além disso,

não haveria a necessidade de acompanhamento físico da operação, já que

esta tarefa poderia ser feita à distância, pela web.

1.3. Organização

Este relatório possui quatro seções principais. Na Revisão Bibliográfica

consta toda a referência utilizada para a formulação do projeto, que inclui uma

descrição de máquina CNC e código G, uma explicação dos conceitos de

4

Manufatura Virtual e e-Manufaturing, assim como as definições e as

arquiteturas de web services e de UML. Nessa seção são especialmente

importantes as descrições dos diagramas de caso de uso, classes e

sequências da UML, pois eles formam a base da modelagem da arquitetura do

software.

Na seção Detalhamento do projeto consta a modelagem do software,

com suas funcionalidades e especificações.

Em seguida, na Descrição do programa, são explicadas detalhadamente

as principais funções do programa, a sua interface gráfica e como é feito o

acesso remoto.

A seção de Testes realizados apresenta os resultados de duas

simulações, sendo uma de operação local e a outra via web.

Finalmente, na seção Conclusões, discutem-se os resultados atingidos,

as limitações do projeto e os pontos de melhoria.

5

2. Revisão Bibliográfica

2.1. Máquinas CNC

Máquinas de comando numérico são equipamentos de usinagem que

são controlados por dispositivo eletrônico capaz de receber informações por

meio de entrada própria, compilar estas informações e transmiti-las em forma

de comando à máquina operatriz, de modo que esta, sem a intervenção do

operador, realize as operações na sequência programada. Estas máquinas se

diferenciam das convencionais por não necessitarem de acessórios que

proporcionem o controle dos movimentos da máquina, tais como gabaritos,

cames, limites etc. e mesmo a interferência direta do operador. Estes

movimentos são comandados por meio dos dados de entrada, garantindo

uniformidade e qualidade de peça e lotes (MOLLICA, 2001).

Além de solucionar usinagem de peças de grande complexidade, as

máquinas de controle numérico auxiliam na redução de tempos improdutivos,

no posicionamento e retirada da ferramenta de corte, e ainda introduziram

grande flexibilidade no processo de fabricação, pois para se alterar a operação

basta que se modifique a sequência de instruções (MOLLICA, 2001).

Em 1947, John Parsons, da Parsons Corporation, iniciou experimentos

com a idéia de utilizar dados de curvatura de três eixos para controlar

movimentos de ferramentas em máquinas para a produção de componentes

para a indústria de aviões. Em 1948, Parsons foi contratado pela Força Aérea

dos Estados Unidos para construir o que viria a ser o primeiro comando

numérico. Em 1951, o projeto foi assumido pelo MIT (Massachusets Institute of

Technology). Em 1952, o comando numérico ficou pronto e demonstrou que

movimentos simultâneos com três eixos eram possíveis, usando um

controlador construído em laboratório e um eixo árvore (spindle) vertical. Em

torno de 1955, depois de alguns refinamentos, o comando numérico tornou-se

disponível para a indústria (BRUNE, 2008).

Nos anos 70, máquinas operatrizes de Controle Numérico

Computadorizado (CNC) foram desenvolvidas com microcomputadores usados

como unidades de controle. Com os avanços em eletrônica e computação,

6

sistemas modernos CNC empregam diversos microprocessadores de alto

desempenho e CLPs (Controlador Lógico Programável) que trabalham

coordenadamente, em paralelo. Os sistemas atuais de CNC permitem,

simultaneamente, controle de posição dos servomotores e das velocidades em

todos os eixos, monitoramento do desempenho do controlador e da máquina

ferramenta, programação computacional com suporte gráfico, monitoramento

do processo de corte e medição automática, possibilitando operações

totalmente livres de interferência humana (ALTINTAS, 2000).

Um torno CNC pode ser visto na Figura 2.1.

Figura 2.1. Torno CNC
1
.

Com o surgimento do controle numérico foi necessário desenvolver uma

linguagem compreensível pelos controles das máquinas e esta deveria ser

padronizada para que minimizasse o efeito "Torre de Babel”2 tão comum em

tecnologias emergentes. Deste modo a EIA Standards, (Associação das

industrias elétricas dos EUA) e posteriormente e em nível mundial a ISO

(International Organization for Standardization) adotaram algumas

1
 Imagem retirada da web - http://www.limabonfa.com.br/images/Torno_CNC.gif

2
 Em engenharia, diz-se da multiplicidade de linguagens incomunicáveis, dificultando a

integração de componentes.

7

prerrogativas, dentre elas a distinção entre código G (general ou preparatory) e

código M (miscelaneous) (MUNDO CNC, 2008).

A linguagem de programação de CNC é comumente conhecida como

código G, mas engloba tanto as funções G quanto as funções M. Consiste em

linhas de código que são interpretadas pela máquina e traduzidas em

movimentos ou outras ações. A Tabela 2.1 mostra a lista de códigos G e a

Tabela 2.2 apresenta os códigos M de acordo com a norma ISO 1056.

Tabela 2.1. Código G pelo Padrão ISO 1056.

Código G Função

G00 Posicionamento rápido

G01 Interpolação linear

G02 Interpolação circular no sentido horario (CW)

G03 Interpolação circular no sentido anti-horario (CCW)

G04 Temporização (Dwell)

G05 Não registrado

G06 Interpolação parabólica

G07 Não registrado

G08 Aceleração

G09 Desaceleração

G10 a G16 Não registrado

G17 Seleção do plano XY

G18 Seleção do plano ZX

G19 Seleção do plano YZ

G20 Programação em sistema Inglês (Polegadas)

G21 Programação em sistema Internacional (Métrico)

G22 a G24 Não registrado

G25 a G27 Permanentemente não registrado

G28 Retorna a posição do Zero máquina

G29 a G32 Não registrados

G33 Corte em linha, com avanço constante

G34 Corte em linha, com avanço acelerando

G35 Corte em linha, com avanço desacelerando

8

Tabela 2.1. Código G pelo Padrão ISO 1056 (Continuação).

Código G Função

G36 a G39 Permanentemente não registrado

G40 Cancelamento da compensação do diâmetro da ferramenta

G41 Compensação do diâmetro da ferramenta (Esquerda)

G42 Compensação do diâmetro da ferramenta (Direita)

G43 Compensação do comprimento da ferramenta (Positivo)

G44 Compensação do comprimento da ferramenta (Negativo)

G45 a G52 Compensações de comprimentos das ferramentas

G53 Cancelamento das configurações de posicionamento fora do
zero fixo

G54 Zeragem dos eixos fora do zero fixo (01)

G55 Zeragem dos eixos fora do zero fixo (02)

G56 Zeragem dos eixos fora do zero fixo (03)

G57 Zeragem dos eixos fora do zero fixo (04)

G58 Zeragem dos eixos fora do zero fixo (05)

G59 Zeragem dos eixos fora do zero fixo (06)

G60 Posicionamento exato (Fino)

G61 Posicionamento exato (Médio)

G62 Posicionamento (Groceiro)

G63 Habilitar óleo refrigerante por dentro da ferramenta

G64 a G67 Não registrados

G68 Compensação da ferramenta por dentro do raio de canto

G69 Compensação da ferramenta por fora do raio de canto

G70 Programa em Polegadas

G71 Programa em metros

G72 a G79 Não registrados

G80 Cancelamento dos ciclos fixos

G81 a G89 Ciclos fixos

G90 Posicionamento absoluto

G91 Posicionamento incremental

G92 Zeragem de eixos (mandatório sobre os G54...)

G93 Avanço dado em tempo inverso (Inverse Time)

G94 Avanço dado em minutos

9

Tabela 2.1. Código G pelo Padrão ISO 1056 (Continuação).

Código G Função

G95 Avanço por revolução

G96 Avanço constante sobre superfícies

G97 Rotação do fuso dado em RPM

G98 e G99 Não registrados

Tabela 2.2. Código M pelo Padrão ISO 1056.

Código M Função

M00 Parada programa

M01 Parada opcional

M02 Fim de programa

M03 Liga o fuso no sentido horário (CW)

M04 Liga o fuso no sentido anti-horário (CCW)

M05 Desliga o fuso

M06 Mudança de ferramenta

M07 Liga sistema de refrigeração numero 2

M08 Liga sistema de refrigeração numero 1

M09 Desliga o refrigerante

M10 Atua travamento de eixo

M11 Desliga atuação do travamento de eixo

M12 Não registrado

M13 Liga o fuso no sentido horário e refrigerante

M14 Liga o fuso no sentido anti-horário e o refrigerante

M15 Movimentos positivos (aciona sistema de espelhamento)

M16 Movimentos negativos

M17 e M18 Não registrados

M19 Parada do fuso com orientação

M20 a M29 Permanentemente não registrado

M30 Fim de fita com rebobinamento

M31 Ligando o "Bypass"

M32 a M35 Não registrados.

M36 Acionamento da primeira gama de velocidade dos eixos

10

Tabela 2.2. Código M pelo Padrão ISO 1056 (Continuação).

Código M Função

M37 Acionamento da segunda gama de velocidade dos eixos

M38 Acionamento da primeira gama de velocidade de rotação

M39 Acionamento da segunda gama de velocidade de rotação

M40 a M45 Mudanças de engrenagens se usada, caso não use, Não
registrados.

M46 e M47 Não registrados.

M48 Cancelamento do G49

M49 Desligando o "Bypass"

M50 Liga sistema de refrigeração numero 3

M51 Liga sistema de refrigeração numero 4

M52 a M54 Não registrados.

M55 Reposicionamento linear da ferramenta 1

M56 Reposicionamento linear da ferramenta 2

M57 a M59 Não registrados

M60 Mudança de posição de trabalho

M61 Reposicionamento linear da peça 1

M62 Reposicionamento linear da peça 2

M63 a M70 Não registrados.

M71 Reposicionamento angular da peça 1

M72 Reposicionamento angular da peça 2

M73 a M89 Não registrados.

M90 a M99 Permanentemente não registrados

2.2. Manufatura Virtual e e-Manufacturing

2.2.1. Manufatura Virtual

Dado que a proposição é criar um software que seja um ambiente de

simulação de máquinas ferramentas, é importante atentar ao conceito de

Manufatura Virtual e aos paradigmas associados à sua definição pertinentes ao

projeto em questão para determinar suas potenciais aplicações.

O termo Manufatura Virtual passou a ser utilizado em meados dos anos

90, em parte como resultado da iniciativa do Departamento de Defesa dos

11

EUA, na qual a evolução do ambiente de defesa e das estratégias de aquisição

propiciou o desenvolvimento da capacidade de confirmar a viabilidade de

novos sistemas de armas antes de comprometer recursos de produção. Até

metade dessa década, os primeiros trabalhos neste campo foram realizados,

na maior parte dos casos, por organizações como as indústrias aeroespacial e

automobilística (BANERJEE e ZETU, 2001).

Os sistemas de Manufatura Virtual são modelos integrados baseados

em computador que representam tanto o comportamento como o esquema

físico e lógico dos sistemas de manufatura reais (ONOSATO e IWATA, 1993);

A Manufatura Virtual também pode ser definida como “um ambiente

integrado e sintético da manufatura exercido para melhorar todos os níveis de

controle e decisão” (LAWRENCE ASSOCIATES INC, 1994).

Um sistema de Manufatura Virtual contém um modelo do produto, do

processo e dos recursos, além de contar com uma prototipagem virtual

(KIMURA, 1993). Consequentemente, por meio de um sistema de Manufatura

Virtual é possível examinar vários dos paradigmas da engenharia relacionados

à manufatura, tais como o projeto do produto, o planejamento do processo, e o

controle da operação no chão-de-fábrica (LEE e NOH, 1997).

Quando novos sistemas ou produtos são desenvolvidos, os custos do

ciclo de vida são determinados por diversas decisões tomadas nas primeiras

etapas do ciclo de desenvolvimento, na fase de definição do conceito. Corrigir

erros encontrados no produto final ou em estágios avançados do processo de

desenvolvimento causados por decisões tomadas nas etapas iniciais envolve

mudanças no projeto que consomem tempo e recursos. O principal benefício

esperado com a utilização de sistemas de Manufatura Virtual é a redução do

tempo de ciclo e do custo de desenvolvimento de produto (LEE, CHEUNG e LI,

2001).

Desta forma, a Manufatura Virtual propõe prover uma estratégia para a

integração de vários processos de manufatura associados à fabricação e à

montagem de um produto, sendo que tais processos podem ser simulados em

um computador por intermédio de um ambiente de modelagem e simulação. A

capacidade de um sistema de Manufatura Virtual contempla todas as variáveis

12

do ambiente de produção, das informações de projeto aos processos de chão

de fábrica e às transações empresariais. Ou seja, ela considera as interações

dos processos de produção, planejamento do processo e da montagem,

programação, logística das linhas da empresa e os processos associados,

como contabilidade, compras e gerenciamento (SOUZA, et al., 2002).

Como pode-se ver pela Figura 2.2, o escopo do sistema de Manufatura

Virtual engloba os 3 diferentes paradigmas a seguir (SOUZA, et al., 2002):

 Orientado para o projeto: fornece informações sobre a manufatura

ao processo de desenvolvimento, permitindo a simulação de

diversas alternativas de manufatura e a criação de protótipos no

computador. Consiste no uso de simulações baseadas na

manufatura para otimizar o projeto do produto em uma meta

específica da manufatura, como por exemplo o DFA (Design for

Assembly) ou a sua flexibilidade;

 Orientado para a produção: fornece capacidade de simulação aos

modelos dos processos de manufatura com o propósito de

permitir o planejamento de recursos necessários, a avaliação de

diversas alternativas de processamento e a geração e validação

de novos planos de processo de modo rápido e econômico, sem

que para isso sejam executados processos reais;

 Orientado para o controle: oferece um ambiente para a simulação

dos modelos de controle de chão de fábrica, assim como de uma

máquina real, permitindo a otimização de seus parâmetros

durante o ciclo de produção existente. Portanto, este paradigma

oferece um ambiente para a avaliação de projetos novos ou

revisados em relação às atividades atuais de chão de fábrica.

Do modo como os paradigmas relacionados à Manufatura Virtual foram

apresentados, um software de simulação de máquinas ferramenta se aproxima

mais dos paradigmas orientados para o projeto e de controle. As suas

funcionalidades compreendem:

13

 Fornecer um ambiente para que os projetistas avaliem a

manufaturabilidade e a viabilidade do projeto de um produto por

meio da construção de um protótipo virtual;

 Simulação da máquina na qual será realizada a usinagem.

Parâmetros como a sua dimensão e o comportamento dinâmico

da máquina durante a usinagem constituem informações

importantes para a realização do projeto;

 Teste e validação da precisão do projeto de um produto. Isto inclui

atividades como a validação de programas de controle numérico,

a verificação da trajetória da sua ferramenta e a checagem de

possíveis colisões durante a usinagem.

Figura 2.2. Ambiente da manufatura virtual (PORTO e PALMA, 2000).

14

2.2.2. e-Manufacturing

A e-Manufacturing se dá com a implementação de redes de

comunicação em todos os níveis da manufatura. Nos níveis inferiores, redes de

comunicação fornecem uma maior confiabilidade e visibilidade à infra-estrutura

de uma planta de fábrica. Ainda, eles capacitam o controle distribuído da planta

e a interoperabilidade entre máquinas.

Em níveis mais altos, redes de comunicação podem padronizar serviços

de forma a permitir que a automação da programação, o controle e o

diagnóstico dos processos de manufatura sejam feitos no escopo da fábrica e

não mais apenas no escopo da máquina (MOYNE e TILBURY, 2007).

A rede a ser estabelecida para este projeto será baseada na estrutura de

web services. Ela é baseada em uma arquitetura cliente/servidor, que trabalha

de forma interativa e cooperativa, solicitando e provendo serviços.

2.3. Web Services

2.3.1. Definição

W3C Working Group Note - Web Service Architecture (WSA)

O relatório técnico WSA da World Wide Web Consortium (W3C), escrito

no período de 2002 a 2004, fornece uma definição de um web service ao

descrever as características comuns e necessárias à maioria dos web services.

Este relatório não visa especificar como um web service deve ser

implementado, e sim guiar a comunidade a uma maior compreensão do

conceito de web service e das relações entre os componentes de sua

arquitetura.

Assim, a definição de web service aqui apresentada, assim como o

esquema geral de sua arquitetura foram consultadas no relatório WSA.

Definição e propriedades

Web service é um sistema de software designado a servir de suporte

para interações entre máquinas de forma interoperável por uma rede de

15

comunicação. Ele possui uma interface descrita em um formato processável

por máquina. Outros sistemas interagem com o web service de acordo como o

especificado pela sua descrição, utilizando-se de protocolos de comunicação

baseados na sintaxe XML (eXtensible Markup Language) (W3C WORKING

GROUP NOTE, 2004).

Como o XML é um padrão aberto de codificação de informações, os web

services são independentes em relação a sistemas operacionais, linguagem de

programação e hardware. Isso significa que aplicativos codificados em

diferentes linguagens de programação podem facilmente trocar informações

entre si através da Internet ou de uma rede local por meio de web services,

como mostra a Figura 2.3. (ALTOVA, 2006).

Figura 2.3. Esquema básico de web service (CERAMI, 2002).

Embora não seja estritamente ne cessário, é desejável que um web

service tenha outras duas propriedades adicionais (CERAMI, 2002):

 Web services devem ser auto-explicativos: para facilitar a integração

com outros sistemas, um web service deve incluir pelo menos uma

documentação textual. É interessante que ele inclua uma interface

pública, codificada em XML, que possa ser utilizada para identificar

todos os métodos públicos, seus parâmetros e valores retornados;

 Web services devem ser localizáveis: ao criar um web service, é

recomendável que exista uma forma de publicá-lo. Da mesma forma, é

interessante que exista um mecanismo pelo qual interessados possam

procurá-lo e assim encontrar sua interface pública.

16

O desenvolvimento baseado em web services está se tornando a

estratégia dominante para a representação e distribuição de informações

através de múltiplos sistemas, inclusive para aqueles que não foram

inicialmente planejados ou desenvolvidos para interagirem entre si (BELL, DE

CESARE, et al., 2006).

2.3.2. Arquitetura

Arquitetura do ponto de vista dos agentes

Existem duas formas de visualizar a arquitetura de um web service

(CERAMI, 2002). A primeira delas é examinar as funções de cada agente na

sua arquitetura.

Um web service é uma abstração que deve ser implementada por um

agente concreto. Portanto, um agente é um software que envia e recebe

mensagens, enquanto que o serviço em si é o recurso caracterizado pelo

conjunto abstrato de funcionalidades fornecidas (W3C WORKING GROUP

NOTE, 2004).

São três os principais agentes presentes na arquitetura de um software:

 Provedor: o provedor implementa o web service e o torna

disponível na rede;

 Solicitante: é qualquer cliente do web service. Ele pode utilizar um

web service existente ao estabelecer uma conexão e enviar uma

solicitação no formato XML;

 Registro: é um diretório centralizado de web services, permitindo

aos desenvolvedores publicar novos serviços e encontrar os já

existentes.

A Figura 2.4 mostra os principais agentes na arquitetura de uma web

service, assim como as interações que ocorrem entre elas.

17

Figura 2.4. Principais agentes de um web service (CERAMI, 2002).

Em um cenário hipotético, supondo que a empresa A faça um pedido de

compra de peças para a empresa B e que a empresa A deseja monitorar o

status do seu pedido por meio de um aplicativo que controla seu estoque,

pode-se estabelecer os seguintes procedimentos:

 O aplicativo que controla o estoque da empresa A se conecta ao

registro de serviços, e inquire se há um serviço de monitoração do

status de pedidos providenciado pela empresa B;

 O aplicativo então se conecta ao servidor da empresa B e

recupera a descrição do serviço desejado, que contém detalhes

completos de como o aplicativo deve se conectar ao serviço;

 De posse dessas informações, o aplicativo pode chamar o serviço

e retornar o status do pedido.

Neste cenário, a Figura 2.4 teria como provedor do web service o

servidor da empresa B e o solicitante seria o aplicativo de estoque da empresa

A. As mudanças, assim como as respectivas transações entre cada um dos

agentes estão representadas na Figura 2.5.

18

Figura 2.5. Descrição do sistema de monitoração do status de um pedido (CERAMI,

2002).

Arquitetura do ponto de vista da pilha de protocolos

A segunda forma de visualizar sua arquitetura é justamente examinar as

múltiplas camadas que compõem a sua pilha de protocolos (CERAMI, 2002).

Como mostra a Figura 2.6, existem quatro camadas:

 Localização do serviço: responsável por centralizar web services

em um registro comum, provendo a funcionalidade de publicação

e busca. Tais procedimentos são feitos via UDDI (Universal

Description, Discovery and Integration);

 Descrição do serviço: responsável por descrever a interface

pública de um web service específico. Atualmente, tal descrição é

realizada por meio da linguagem WSDL (Web Service Description

Language);

 Protocolo de mensagens: responsável por codificar mensagens

em um formato XML padrão para que ambos os lados da

transação consigam entendê-la. O protocolo SOAP (Simple

Object Access Protocol) é utilizado nessa camada;

 Comunicação: responsável pelo transporte de mensagens entre

as aplicações. São utilizados protocolos padrões de rede como o

HTTP (HyperText Transfer Protocol), SMTP (Simple Mail Transfer

Protocol) e FTP (File Transfer Protocol).

19

Figura 2.6. Pilha de protocolos de uma web service (W3C WORKING GROUP NOTE,

2004).

2.3.3. Tecnologias associadas

Web services são tipicamente construídas sobre as duas principais

tecnologias apresentadas na seção anterior: WSDL e SOAP. Ambos utilizam

um formato baseado em XML e assim como a sintaxe em que se baseiam, eles

são especificados pela World Wide Web Consortium por meio de documentos

de recomendação.

Antes de implementar o web service, seus desenvolvedores criam uma

definição no formato de um documento WSDL, que descreve a sua

funcionalidade e a localidade na rede. Esta informação pode então ser inserida

em um registro UDDI, permitindo que clientes possam procurar na rede e

encontrar os serviços de que necessitam, muito embora um web service não

precise ser localizável, como discutido na seção 2.3.1. Com base na

informação no registro UDDI, o cliente usa as instruções no documento WSDL

para construir mensagens SOAP e trocar dados com o web service por meio de

algum protocolo padrão como o HTTP (ALTOVA, 2006). As tecnologias WSDL

e SOAP serão apresentadas em maior detalhe a seguir.

20

Web Service Description Language (WSDL)

A WSDL fornece um modelo em um formato XML especificamente para

descrever web services. Essencialmente, a WSDL descreve quatro

informações importantes sobre o web service (CERAMI, 2002):

 Tipos de dados utilizados por todas as mensagens de entrada e

saída;

 Interface pública e todos os seus métodos disponíveis;

 Protocolo de transporte a ser utilizado e suas características;

 Endereço de rede pelo qual o web service pode ser acessado.

A sua especificação define uma linguagem em que é possível descrever

em blocos separados tanto a funcionalidade abstrata oferecida por um serviço

quanto os seus detalhes concretos, como a sua localidade e de que forma ela é

oferecida. Dentro de cada bloco, a descrição utiliza alguns elementos para

dividir perspectivas de projeto independentes (W3C RECOMMENDATION,

2007).

Como pode se ver na Figura 2.7, description deve ser o elemento base

de qualquer documento WSDL. Ele define o nome da web service, declara

mútiplos espaços de nomes usados ao longo do documento e contém todos os

outros elementos descritos a seguir.

Figura 2.7. Especificação de um documento WSDL.

21

No nível abstrato, a WSDL descreve um web service em termos das

mensagens que ele envia e recebe. Mensagens são descritas

independentemente de um formato de transmissão específico, através do XML.

Neste nível, o WSDL possui os seguintes elementos:

 types: descreve todos os tipos de dados utilizados entre o cliente

e o servidor;

 operation: pode ser comparado à uma chamada de função em

uma linguagem de programação tradicional. Está definida neste

elemento a forma de codificação da mensagem associada à

operação. As mensagens contém zero ou mais elementos types,

referenciando parâmetros ou valores de retorno;

 interface: agrupa as operações que podem ser realizadas pelo

web service.

No nível concreto da especificação, existem os seguintes elementos:

 binding: especifica os detalhes quanto ao formato de transmissão

via rede de uma ou mais interfaces. Informações relevantes ao

SOAD são definidas aqui.

 endpoint: associa um endereço de rede a uma binding. Ou seja,

define o endereço a ser utilizado para invocar um serviço.

 service: conjunto de endpoints. Portanto, pode ser considerado

como sendo os endereços referentes à todas as operações

executáveis pelo web service.

Simple Object Access Protocol (SOAP)

O SOAP é um protocolo para troca de informações estruturadas em

plataformas descentralizadas e distribuídas. Ela se baseia na sintaxe da XML

para fundamentar a construção de mensagens que podem trafegar através de

diversos protocolos de transporte. Usualmente, o SOAP negocia RPCs (remote

procedure calls) utilizando o HTTP. O SOAP é especificado de tal forma que

ele seja independente de qualquer linguagem de programação e também de

quaisquer semânticas específicas à implementação (W3C

RECOMMENDATION, 2007).

22

A especificação do SOAP define três principais partes (CERAMI, 2002):

 Envelope da mensagem: contém os dados a serem transferidos

entre o cliente e o servidor. Isto inclui desde os nomes,

parâmetros e valores de retorno dos métodos a serem invocados,

até informações sobre quem deve processar o conteúdo do

envelope e, em caso de erros, como codificar mensagens de erro;

 Regras de codificação: a transferência de dados exige que ambas

as máquinas estabeleçam um padrão de regras para codificar

tipos de dados definidos pelas aplicações. Portanto, O SOAP

inclui suas próprias convenções para a codificação;

 Convenções RPC: para trocas de mensagens em mão dupla, o

SOAP define uma convenção para representar chamadas de

procedimento remoto e suas respostas. Isso permite que um

cliente especifique o nome de um método remoto, inclua o

número de parâmetros e receba uma resposta do servidor.

2.4. UML

A UML (Unified Modeling Language) é uma linguagem padrão para a

elaboração da estrutura de projetos de software. Ela pode ser empregada para

a visualização, especificação, construção e a documentação de artefatos que

façam uso de sistemas complexos de software (BOOCH, RUMBAUGH e

JACOBSON, 2005).

Os esforços para a criação de uma linguagem unificada de modelagem

de sistemas de software começaram oficialmente em 1994, com a participação

de diversas empresas parceiras e dos autores dos principais métodos de

modelagem utilizados na época. Tal colaboração resultou na UML 1.0,

oferecida para padronização ao OMG (Object Management Group), em 1997.

A OMG é a responsável pela manutenção e atualização, tendo lançado

diversas revisões da UML. Em 2005, foi lançado a UML 2.0, uma importante

revisão incluindo muitos recursos adicionais. Os documentos de especificação

da UML 2.0 se encontram no site da OMG, em

http://www.omg.org/spec/UML/2.0/.

23

2.4.1. Arquitetura

Visualizar, especificar, construir e documentar sistemas complexos de

software são tarefas que requerem a visualização desses sistemas sob várias

perspectivas. Diferentes participantes, entre eles os usuários finais,

desenvolvedores e gerentes, trazem contribuições próprias ao projeto e

observam o sistema de maneira distinta em momentos diferentes ao longo do

desenvolvimento.

Portanto, a arquitetura de um sistema complexo de software pode ser

modelada mais adequadamente por cinco visões interligadas, em que cada

uma constitui uma projeção de sua organização e estrutura (BOOCH,

RUMBAUGH e JACOBSON, 2005). A Figura 2.8 mostra um esquema

representando as diversas perspectivas de modelagem.

Figura 2.8. A modelagem da arquitetura de um sistema de software (BOOCH,

RUMBAUGH e JACOBSON, 2005).

 Visão de caso de uso: abrange os casos de uso que descrevem a

funcionalidade do sistema conforme é visto pelos seus clientes ou

usuários finais. Essa visão especifica os requisitos a que o

sistema deve atender, e que determinam a forma da arquitetura

do sistema;

 Visão de projeto abrange as classes lógicas e interfaces que

formam o vocabulário do sistema, assim como os

24

relacionamentos existentes entre elas que se traduzem no

comportamento do sistema como um todo;

 Visão de processo: mostra o fluxo de controle entre as várias

partes, incluindo mecanismos de concorrência e de sincronização.

Essa visão cuida principalmente das questões referentes ao

desempenho, à escalabilidade e ao throughput (taxa de

transferência de dados) do sistema.

 Visão de implementação: abrange os componentes e os artefatos

utilizados para a montagem e fornecimento do sistema físico.

Essa visão envolve o gerenciamento das versões do sistema e diz

respeito ao mapeamento de classes lógicas para arquivos e

demais artefatos físicos;

 Visão de implantação: abrange os nós que formam a topologia de

hardware em que o sistema é executado. Essa visão direciona a

distribuição, o fornecimento e a instalação das partes que

constituem o sistema físico.

Cada uma dessas visões envolve uma modelagem estrutural do sistema,

em que são focados seus itens estáticos, assim como uma modelagem

comportamental de sua dinâmica. Em conjunto, essas visões captam as

decisões mais importantes sobre o sistema. Individualmente, cada uma delas

permite voltar sua atenção para uma perspectiva do sistema e analisar suas

decisões com clareza.

A modelagem de uma aplicação monolítica, executada em um único

equipamento como é o caso deste projeto, permite focar nas visões de casos

de uso, projeto e processo, em detrimento principalmente das perspectivas de

implementação e implantação.

2.4.2. Diagramas

Um diagrama é uma apresentação gráfica de um conjunto de elementos,

geralmente representados como um gráfico conectado de vértices (itens) e

arcos (relacionamentos) (BOOCH, RUMBAUGH e JACOBSON, 2005).

25

Para a modelagem do sistema de software referente à este projeto, são

utilizados essencialmente os diagramas de classes, de casos de uso e de

sequência.

Antes de detalhar cada diagrama, é importante explicar os tipos de

relacionamentos que existem e como eles são representados graficamente,

pois eles são comuns aos diagramas da UML.

Relacionamentos

Um relacionamento é uma conexão entre itens, e é representado

graficamente com tipos diferentes de linhas para diferenciar os tipos de

relacionamentos. Na modelagem orientada a objetos, existem três tipos de

relacionamentos especialmente importantes (BOOCH, RUMBAUGH e

JACOBSON, 2005).

Uma dependência3 é um relacionamento de utilização, determinando

que um item usa as informações e serviços de outro. Ele é representado

graficamente com linha tracejadas apontando o item do qual o outro depende,

como é mostrado na

Figura 2.9 entre os itens Janela e Evento.

3
 Sublinhado: Conceitos-chave da UML e de programação orientada a objetos.

26

Figura 2.9. Relacionamentos.

Uma generalização é um relacionamento entre itens gerais (pai) e tipos

mais específicos destes (filhos), como ocorre entre Janela e CaixaDeDiálogo

na

Figura 2.9. Isto significa que CaixaDeDiálogo herda todas as propriedades de

Janela além de possivelmente possuir atributos e operações próprias. Este

relacionamento é representado por uma linha sólida com uma grande seta

triangular apontando o pai.

Finalmente, uma associação é um relacionamento estrutural que

especifica objetos de um item conectados a objetos de outro item. Uma

associação é representada graficamente como uma linha sólida.

27

Diagrama de classes

Classes são os blocos de construção mais importantes de qualquer

sistema orientado a objetos. Ela é uma descrição de um conjunto de objetos

que compartilham os mesmos atributos, operações, relacionamentos e

semântica (BOOCH, RUMBAUGH e JACOBSON, 2005). Uma classe é

representada graficamente como um retângulo, geralmente dividido em três

partes que listam seu nome, seus atributos e operações (métodos), como

mostra a Figura 2.10.

Figura 2.10. Classe: nome, atributos e operações.

Ainda, como pode ser visto na Figura 2.11, a UML fornece a

possibilidade de modelagem de várias propriedades avançadas das classes, de

seus atributos e de suas operações:

 tipo de dado e assinatura;

 visibilidade: elementos públicos, protegidos e privados;

 escopos de instância e estática;

 elementos abstratos e polimórficos;

 multiplicidade.

Encontrados com grande frequência na modelagem de sistemas

orientados a objetos, o diagrama de classes fornece a visão estática do projeto

de um sistema. O diagrama de classes contém os seguintes elementos:

 Classes;

28

 Relacionamentos de dependência, generalização e associação;

Figura 2.11. Classes avançadas.

Pode-se reconhecer esses elementos na Figura 2.12, que representa a

organização de uma empresa por meio de um diagrama de classes.

Diagrama de casos de uso

Um caso de uso é uma descrição de sequências de ações que um

sistema executa para produzir um resultado de valor observável por um ator

(BOOCH, RUMBAUGH e JACOBSON, 2005).

Os diagramas de casos de uso têm um papel central para a modelagem

do comportamento de um sistema, ou mesmo de uma classe. Eles fazem com

que o sistema representado se torne acessível e compreensível, ao exibir

graficamente os seus requisitos do ponto de vista de um ator externo e permitir

a visualização da fronteira do sistema em termos dos comportamentos que

fazem parte dele. Os diagramas de casos de uso contêm os seguintes

elementos:

 Assunto;

 Casos de uso;

 Atores;

 Relacionamentos de dependência, generalização e associação;

29

Figura 2.12. Um diagrama de classes.

Um caso de uso é representado graficamente por meio de uma elipse,

como mostra a Figura 2.13. Os atores representam o papel que um humano,

um dispositivo de hardware ou até mesmo outro software desempenham com o

sistema em questão e são esquematizados por figuras de palito.

Figura 2.13. Atores e casos de uso.

Os atores poderão estar conectados aos casos de uso somente pela

associação. Isto indica que o ator e o caso de uso se comunicam entre si, com

a possibilidade de enviar e receber mensagens.

30

Dois casos de uso também podem se relacionar por uma especificação

de generalização, inclusão ou extensão existente entre eles. Esses

relacionamentos são mostrados na Figura 2.14.

Figura 2.14. Generalização, inclusão e extensão.

Um relacionamento de inclusão significa que o caso de uso base agrega

o comportamento do caso de uso incluído. O caso de uso incluído nunca

permanece isolado, sendo apenas instanciado como parte de alguma base

maior. Assim, é possível evitar descrever o mesmo fluxo de eventos várias

vezes ao incluir o comportamento comum entre vários casos de uso em um

caso de uso próprio (o caso de uso base).

Por sua vez, um relacionamento de extensão significa que o caso de uso

base agrega o comportamento de outro caso de uso em somente em um local

especificado indiretamente pelo caso de uso estendido, denominado ponto de

extensão. Este relacionamento pode ser empregado para modelar

comportamentos opcionais do sistema ou subfluxos executados somente sob

determinadas condições.

A inclusão e a extensão podem ser representadas como um

relacionamento de dependência, estereotipados como <<include>> e

<<extend>>.

Finalmente, o assunto representa a fronteira do sistema a ser descrito

pelo diagrama e é exibido como um retângulo, contendo o conjunto de elipses

de casos de uso e seus relacionamentos. Na Figura 2.15, é mostrado um

31

exemplo de diagrama de caso de uso descrevendo o comportamento de um

telefone celular.

Figura 2.15. Um diagrama de caso de uso.

Diagrama de sequência

Um diagrama de sequência mostra uma interação, formada por um

conjunto de objetos e seus relacionamentos, dando ênfase à ordenação

temporal das mensagens trocadas entre tais objetos (BOOCH, RUMBAUGH e

JACOBSON, 2005). Diagramas de sequência podem ser utilizados para fazer a

modelagem de um determinado fluxo de controle de um caso de uso. O

diagrama de sequência contém os seguintes elementos:

 Papéis ou objetos;

 Mensagens;

Conforme mostra a Figura 2.16, um diagrama de sequência é formado

colocando-se primeiro todos os objetos que participam da interação no nível

superior do diagrama, ao longo do eixo X. Tipicamente, o objeto que inicia a

interação é colocado mais à esquerda e objetos mais subordinados vão sendo

colocados à sua direita. A seguir, as mensagens que esses objetos enviam e

recebem são colocadas ao longo do eixo Y, em ordem crescente de tempo, de

cima para baixo. Isso proporciona ao leitor uma clara indicação visual do fluxo

de controle ao longo do tempo.

32

Figura 2.16. Um diagrama de sequência.

A linha tracejada vertical, chamada linha de vida, representa a existência

do objeto durante um período de tempo. A existência de alguns objetos, como

c:Client e p:ODBCProxy no exemplo, será igual à duração da interação. Outros,

como o :Transaction, poderão ser criados e destruídos no decorrer da

interação. Nesses casos, suas linhas de vida se iniciam com a mensagem

estereotipada como <<create>> e são terminadas com a mensagem

estereotipada como <<destroy>>.

O principal conteúdo em um diagrama de sequência é o conjunto de

mensagens. Uma mensagem é representada graficamente por uma seta que

vai de uma linha de vida para outra, sempre apontando para o destinatário. O

retângulo alto e estreito que aparece sobre a linha de vida, geralmente iniciado

com uma mensagem é o foco de controle. Ele mostra o período durante o qual

um objeto está desempenhando uma ação.

Um diagrama de sequência pode mostrar fluxos de controle condicionais

e iterativos (loops) por meio de operadores de controle. Um operador de

controle é apresentado como uma região retangular no diagrama de sequência.

Ela possui um rótulo de texto no canto superior esquerdo para informar o tipo

do operador. Para operadores condicionais e iterativos, os rótulos são

Se/Senão e Laço, respectivamente.

33

3. Detalhamento do projeto

O software em questão possui uma interface gráfica para

acompanhamento da operação de usinagem, bem como uma área de edição

de texto, para alterar e criar programas G, com um verificador de sintaxe. A

simulação é acompanhada por meio de uma área de visualização, que mostra

o percurso da ferramenta durante a usinagem.

O web service permite acesso remoto às funcionalidades do programa,

como verificação de sintaxe, acompanhamento da operação de usinagem e

envio de comandos à máquina.

O usuário pode interagir com o sistema através do web service ou por

meio da própria interface gráfica do programa.

A máquina virtual simula o funcionamento de uma máquina CNC. Este

comportamento se traduz em alguns parâmetros específicos do modo de

operar do equipamento, como por exemplo o tempo gasto para o

referenciamento dos eixos de coordenadas, o tempo para a retirada da peça

fabricada, a velocidade máxima dos motores e a resolução do sistema de

movimentação.

A Figura 3.1 mostra como se relacionam os componentes do sistema.

Figura 3.1. Esquema do projeto.

34

A utilização de uma máquina virtual no sistema se deve ao fato da

máquina CNC real ser muito cara. Contudo, é possível a adaptação do

software para a comunicação com um equipamento real, já que a máquina

virtual procura simular exatamente seu comportamento, inclusive em relação à

troca de informações. Esta adaptação é ilustrada na Figura 3.2.

Figura 3.2. Substituição da máquina virtual pela real.

3.1. Arquitetura do software

Para a descrição detalhada da estrutura do projeto, será utilizada a

linguagem mais aceita e empregada atualmente para este fim, a UML (Unified

modeling language), por meio do Microsoft Visual Studio 2010. Em primeiro

lugar, são ilustradas quais as possíveis ações do usuário do sistema (diagrama

de casos de uso). Em seguida, como as entidades se relacionam e quais são

35

seus membros (diagrama de classes), e por fim é apresentado o processo

detalhado de quatro atividades (diagramas de sequência).

3.1.1. Diagrama de casos de uso

Na Figura 3.3 estão representadas as principais ações que o usuário

pode realizar.

Figura 3.3. Diagrama de Casos de Uso.

 Verificar sintaxe: O usuário pode verificar um código G para

encontrar erros e então tentar corrigi-los. Estes erros podem ser

códigos G inválidos, parâmetros insuficientes ou inconsistências

no programa em geral;

36

 Carregar código G: Para submeter o programa, o usuário

carrega o código G na memória da máquina;

 Executar programa: O usuário pode ordenar o início da

operação de usinagem apenas se já tiver carregado o código na

máquina. Neste momento, o sistema faz uma última verificação

da sintaxe, para garantir que a operação não apresentará erros

de programação;

 Parar execução: O usuário ordena a interrupção imediata da

usinagem. Esta parada pode ser definitiva ou apenas uma pausa;

 Acompanhar operação: Enquanto a máquina CNC está

trabalhando, a tela do programa exibe o percurso da ferramenta,

possibilitando um monitoramento do processo;

 Checar status da máquina: Em qualquer momento, é possível

checar se a máquina está usinando, livre, em pausa, retirando a

peça ou se preparando para fabricar uma nova peça;

 Abrir arquivo4: Um arquivo de texto com um código G pode ser

aberto na tela, editado e posteriormente submetido à máquina

para ser executado;

 Salvar arquivo4: O código G pode ser editado pelo usuário e

depois gravado no computador como um arquivo de texto.

3.1.2. Diagrama de classes

A seguir, está apresentado o diagrama de classes do software

desenvolvido, onde é possível identificar que tipos de ação cada classe pode

realizar e que tipo de relação há entre as entidades do sistema (Figura 3.4).

4
 Operação apenas local, não envolvendo a máquina virtual nem o web service.

37

Figura 3.4. Diagrama de Classes.

Principal

Esta classe é a interface com o usuário, que contém os botões, caixas

de texto e outros componentes. Seus principais membros são:

 maquina
5: objeto da classe Maquina, que corresponde à máquina

virtual que está sendo monitorada. Esta instância é criada na

inicialização do sistema;

 txtCodigoG
6: caixa de texto presente na tela do software, na qual

pode ser escrito um programa G;

 txtLog: área de exibição das mensagens do sistema ao usuário;

 ServidorWeb: objeto responsável pelo recebimento dos comandos

via web, a partir da definição de um endereço IP e de uma porta;

 btnCarregarG: botão utilizado para submeter o código à máquina,

para ser executado;

 btnExecutar, btnParar: comandos para o controle da operação da

máquina CNC;

5
 Fonte diferenciada: componentes, operações e nomes de classes.

6
 O prefixo txt nos componentes indica que se trata de uma caixa de texto, enquanto btn indica

que é um botão e mnu é usado para itens da barra de menu.

38

 btnVerificar: verificação do código contido no txtCodigoG;

 mnuAbrir, mnuSalvar: operações comuns de arquivos.

As principais operações que compõem esta classe são:

 atualizarStatus: atualiza o indicador de status da máquina na tela

do programa;

 atualizarTela: função para exibição do percurso e das coordenadas

da ferramenta, em milímetros;

 comandoWeb: interpreta e executa o comando recebido pelo

ServidorWeb e, em seguida, envia uma resposta ao usuário

remoto;

 exibirMsg: exibe uma mensagem no txtLog. Utilizada pela

máquina para comunicar ao usuário qualquer informação

relevante.

Maquina

Esta classe representa a máquina virtual e possui os parâmetros

necessários para a simulação. Seus principais atributos são:

 codigoG: objeto da classe CodigoG que é utilizado na operação;

 F, S: armazenam a velocidade de avanço e rotação da ferramenta,

respectivamente;

 PASSO: constante que armazena a resolução do equipamento,

isto é, a menor variação de posição possível;

 statusMaq: informação sobre o status da máquina; pode adotar

qualquer valor da enumeração Status;

 tFimOp: tempo de retirada da peça da máquina. Inclui o tempo de

parada completa do equipamento e de abertura da comporta;

 tSetUp: tempo necessário para a colocação da peça e o

referenciamento do sistema de coordenadas da máquina;

 timerFimOp, timerSetUp: contadores de tempo responsáveis por

simular a retirada da peça e o set up da máquina,

respectivamente;

39

 timerMov: responsável pelo controle da movimentação da

ferramenta, parametrizado pela velocidade de avanço F. Além

disso, chama a função atualizarTela constantemente, para exibir o

trajeto;

 velMax: velocidade máxima dos atuadores do equipamento. Um

comando de avanço rápido do código G resulta em um

movimento com esta velocidade.

As operações desta classe são:

 executar, pausar, parar: executam os comandos da classe Principal,

de início, pausa e fim de operação;

 carregarG: cria uma instância para o campo codigoG a partir de um

texto;

 verificarG: responsável por chamar a função de verificação de

sintaxe quando a operação de mesmo nome na classe Principal é

acionada;

 lerProximaPalavra: responsável pela interpretação do codigoG,

percorrendo os comandos e executando as tarefas apropriadas.

Caso tenha lido um comando de movimento, aciona a função

ligaTimerMov;

 ligaTimerMov: calcula a direção e a velocidade do movimento da

ferramenta, e em seguida ativa o timerMov;

 status: utilizada pelas outras classes para a checagem do status

da máquina.

CodigoG

Esta classe representa o programa G em si, criado a partir de um texto.

Possui o campo palavras, que armazena todos os comandos do código, e as

funções New, que cria uma instância da classe CodigoG, e VerificarSintaxe, que

localiza erros de programação no código G e é utilizado pela função verificarG

da máquina.

40

Status

Representa uma enumeração dos possíveis status da máquina, que são:

 OCIOSO: significa que a máquina está ociosa, livre para realizar

alguma tarefa;

 PAUSADO: a máquina está pausada no meio de uma operação

de usinagem;

 RETIRANDO: situação de fim de operação, na qual a peça

fabricada é retirada da máquina;

 SETUP: preparação para início de operação, que envolve a

colocação precisa da peça na máquina e o referenciamento dos

eixos;

 USINANDO: a máquina está realizando um processo de

usinagem, ou seja, está ocupada.

3.1.3. Diagramas de sequência

Os casos de uso podem ter nomes ou descrições muito genéricas. Para

isso, empregam-se os diagramas de sequência, que explicam de forma mais

detalhada o processo do caso de uso.

Os processos que envolvem diretamente a máquina e o programa

principal estão detalhados nas Figura 3.5, Figura 3.6, Figura 3.7, e Figura 3.8.

Eles mostram a verificação, o carregamento, a execução do código G e a

parada da operação, respectivamente.

O caso de uso “Acompanhar operação” está atrelado à execução do

programa (Figura 3.7).

Verificar código G (Figura 3.5)

Para a verificação do código G, o usuário deve fazer uso da função

verificarG, que é acionada por um botão na tela do programa. Esta função

chama outra de mesmo nome, pertencente ao objeto maquina, que instancia um

objeto CodigoG a partir do texto recebido e verifica sua sintaxe com a função

VerificarSintaxe.

41

A lista de erros retorna à máquina e em seguida à classe Principal. Os

erros são informados na tela.

Figura 3.5. Diagrama de sequência - Verificar código G.

Carregar programa G (Figura 3.6)

Quando o usuário clica no botão btnCarregarG, o conteúdo do txtCodigoG

é enviado para a máquina, que cria uma instância da classe CodigoG e a

armazena no campo correspondente na máquina.

42

Figura 3.6. Diagrama de sequência - Carregar programa G.

Executar código G (Figura 3.7)

O processo de execução do código G começa com uma verificação da

sintaxe, para garantir que não haverá erros de programação. Caso não sejam

encontrados erros, o controle de operação começa a atuar, e o usuário é

informado do início da operação. Caso contrário, uma mensagem comunicando

a existência de erros é exibida ao usuário.

Enquanto a máquina está usinando a peça, a tela do programa principal

é constantemente atualizada. Ao final da operação, o programa exibe uma

mensagem indicando o fim da execução do programa G.

43

Figura 3.7. Diagrama de sequência – Executar código G.

Parar operação (Figura 3.8)

Para interromper a operação, o usuário aciona a função pararOp, que

chama a função de mesmo nome na classe Maquina. Esta função altera o

44

status da máquina para OCIOSO, fazendo com que o controle da operação

pare de trabalhar.

Figura 3.8. Diagrama de sequência – Parar operação.

45

4. Descrição do programa

4.1. Interface

O programa desenvolvido possui uma interface gráfica com botões,

caixas de texto e uma ampla área de visualização, que permite a operação do

software e a leitura de informações. A aparência da tela é mostrada na Figura

4.1.

Figura 4.1. Interface gráfica do simulador.

1. Área de visualização: Esta é a região onde será descrita a trajetória da

ferramenta. Podem-se ver os eixos X e Z (vermelho) e o contorno da

peça a ser usinada (cinza).

2. Área de edição do código G: Nesta caixa de texto é possível escrever

ou editar um programa G. Quando o usuário abre um arquivo de texto

com um programa, ele é carregado neste campo.

1

2

3

4

5

6

7

8

10

9

46

3. Botão Verificar Sintaxe: Este botão chama a função verificarG. O

código escrito na área de edição é submetido a uma verificação, a fim de

identificar possíveis comandos inválidos ou informações faltantes.

4. Ponto de partida: Neste campo deve ser informada a posição de

partida da ferramenta. A execução do código G entenderá que a

ferramenta se encontrava inicialmente nesta posição.

5. Botão Carregar código G: Este botão é utilizado para submeter o

código G à máquina CNC virtual, para que ele seja executado.

6. Botões Iniciar / Parar: Estes botões controlam a operação da máquina,

ordenando o início da execução, a pausa, a retomada e o fim da

operação.

7. Posição da ferramenta: Permite acompanhar em tempo real a posição

X e Z da ferramenta, em milímetros, ao longo da usinagem. Esta posição

é descrita em relação à origem dos eixos, localizada na extremidade da

peça a ser usinada.

8. Painel de ajuste da área de visualização: Este painel apresenta quatro

opções de tamanho da área de visualização. Tamanhos menores

significam maior aproximação, logo possibilitam uma maior resolução e

precisão do movimento da máquina. Entretanto, se a operação tiver um

percurso muito longo, devem-se usar áreas maiores. Além disto, neste

painel é possível alterar o diâmetro do cilindro representado na tela.

9. Área de mensagens do sistema: Exibe as mensagens que o programa

comunica ao usuário, os erros do código G e a hora, minuto e segundo

da ocorrência da mensagem.

10. Menu Arquivo: Neste menu constam as operações típicas de arquivo,

ou seja, abrir e salvar. Um programa G que for aberto será mostrado na

área de edição, para eventuais alterações e para ser carregado na

máquina.

47

4.2. Principais operações

4.2.1. Verificação de sintaxe

A verificação do código G começa com o usuário clicando no botão

Verificar Sintaxe. Com isso, o código escrito na área de edição é separado em

linhas, e um novo objeto da classe CodigoG é criado a partir das linhas de

código G da área de edição.

Em seguida, chama-se a função verificarSintaxe deste objeto, que

percorre o código, de palavra7 em palavra, verificando se há algum comando

não reconhecido. Esta função retorna uma lista de erros, sendo que cada item

da lista indica a linha e o tipo do erro encontrado.

Os comandos que o software em questão foi projetado para interpretar

são:

 N###: Apenas numeração da linha do programa;

 S###: Determinação da rotação do eixo árvore;

 F###: Determinação da velocidade de avanço da ferramenta;

 G00: Posicionamento rápido (velocidade máxima do

equipamento);

 G01: Interpolação linear (velocidade estabelecida pelo comando

F);

 G90: Modo absoluto de interpretação das coordenadas;

 G91: Modo incremental de interpretação das coordenadas;

 X###: Coordenada no eixo X;

 Z###: Coordenada no eixo Z;

 M02: Fim do programa;

 M03: Liga eixo árvore da máquina no sentido horário.

Qualquer comando diferente destes é interpretado como inválido.

4.2.2. Execução do programa

Primeiramente carrega-se o código G na máquina, por meio do botão

“Carregar código G”. Desta forma, ao clicar em “Iniciar”, a máquina faz uma

7
 Palavra, no contexto do código G, se refere a cada conjunto de uma letra e um número, ou

seja, um comando. Exemplos: “F650”, “Z40.5”

48

verificação no código, e se não houver erros o status é atualizado para

USINANDO, e a sub-rotina lerProximaPalavra é chamada.

Este método percorre o código, palavra por palavra, armazena as

informações, e quando chega ao final da linha, ordena a movimentação da

máquina de acordo com os comandos lidos, chamando o método ligaTimerMov.

Este método implementa o algoritmo de Bresenham para a interpolação linear

entre o ponto inicial e o final do movimento, como explicado por Flanagan

(1996).

A movimentação é simulada por meio de um timer que dispara um

evento repetidamente a cada intervalo de tempo. Este intervalo é uma

propriedade do timer e é medido em milissegundos. O controle de velocidade

da ferramenta é feito alterando-se o valor desta propriedade, ou seja, para

velocidades maiores, intervalos menores, e vice-versa.

A cada intervalo de tempo, a máquina simula um pequeno avanço em

direção ao ponto de destino, informado pelo código G, e atualiza o desenho do

percurso da ferramenta na interface gráfica. Ao término da interpolação linear,

a ferramenta terá percorrido a distância entre o ponto inicial e final a uma

velocidade média F, dada em milímetros por segundo, que foi armazenada na

máquina a partir da informação contida no código G.

4.3. Procedimento para operação local

Na situação em que o usuário do sistema opera diretamente o programa

principal, isto é, localmente, será apresentada a ele a interface gráfica da

Figura 4.1 quando o software for aberto.

Para uma operação típica de usinagem, o primeiro passo é a inserção

de um código em linguagem G. O código pode ser digitado diretamente na área

de edição ou então aberto de um arquivo de texto previamente escrito, por

meio do menu Abrir. O código então deve ser submetido a uma verificação de

sintaxe, com um clique no botão Verificar Sintaxe. Se houver erros, deve-se

corrigi-los na área de edição, e em seguida fazer uma nova verificação. Caso

contrário, o programa está pronto para ser carregado.

O próximo passo é carregar o programa na máquina, através de um

clique no btnCarregarG. Em seguida, é preciso indicar a posição inicial, da

49

ferramenta nos eixos X (vertical) e Z (horizontal), isto é, em que ponto ela se

encontra no começo da execução do código G. Esta localização é o ponto de

partida do percurso da ferramenta.

Segue-se então uma série de ajustes na área de visualização. O usuário

pode reposicionar o sistema de coordenadas na tela, alterar o diâmetro da

peça e alterar a escala do desenho.

Neste ponto clica-se no botão Iniciar, para dar início à execução. Porém,

se o código G contiver erros, o programa não será executado e uma

mensagem será exibida, informando que o código é inválido. Caso o código

seja válido, o indicador de status irá mostrar que a máquina está fazendo o set

up para a operação, e dentro de alguns instantes o status muda para

USINANDO e é possível ver na tela o percurso da ferramenta, bem como a

localização da mesma em relação ao sistema de coordenadas, em milímetros.

A qualquer momento, a operação de usinagem pode ser pausada, com

um clique no botão Pausar, e retomada, com um clique em Iniciar. Pode-se

também interromper a execução, clicando em Parar.

Ao término da execução do programa G, o status da máquina mudará

para RETIRANDO, e depois de alguns segundos mudará novamente para

OCIOSO. Pode-se então executar uma nova operação com o mesmo código,

por meio do botão Iniciar, ou então carregar um novo código G.

4.4. Procedimento para operação remota

Para a operação via web, o usuário conta com uma página web que

contém campos para inserção da posição inicial da ferramenta, área de edição

de código G, área de visualização da usinagem e os botões para carregar o

código G, verificar a sintaxe, iniciar/pausar a operação e parar. Esta interface

de acesso remoto pode ser visto na Figura 4.2.

50

Figura 4.2. Interface web.

Neste caso, o usuário deve inserir o código G na área de edição, e

assim como no procedimento local, verificá-lo e carregá-lo. Deve-se então

indicar o ponto inicial da ferramenta e clicar em Iniciar.

Da mesma forma que na operação local, o usuário pode então pausar ou

parar a usinagem. A área de visualização é constantemente atualizada, para o

acompanhamento do percurso da ferramenta.

51

5. Testes realizados

Para a visualização do funcionamento do sistema foram elaborados dois

códigos G diferentes, para serem executados pelo software nos dois modos de

operação: local e remoto.

5.1. Teste 1 – operação local

Para este teste, foi elaborado um programa G que diminui em alguns

milímetros o raio da extremidade do cilindro. Usou-se um cilindro de diâmetro

40 mm, a área de visualização de 200 x 100 mm e ponto de partida (0, 0).

N010 G00 F200 S300 M03 Seleção de velocidades de avanço e rotação

N020 X-25 Z10 Posicionamento rápido em (10, -25)

N030 G91 Z-10 X4 Modo incremental, posicionamento rápido em (0, -

16)

N040 G01 X2 Movimentação a 200 mm/min para (0, -14)

N050 F100 Z-15 Movimentação a 100 mm/min para (-15, -14)

N060 X-2 Movimentação a 100 mm/min para (-15, -16)

N070 G00 Z15 Posicionamento rápido em (0, -16)

N080 G01 F200 X3 Movimentação a 200 mm/min para (0, -13)

N090 F100 Z-15 Movimentação a 100 mm/min para (-15, -13)

N100 X-3 Movimentação a 100 mm/min para (-15, -16)

N110 G00 Z15 Posicionamento rápido em (0, -16)

N120 G01 F200 X4 Movimentação a 200 mm/min para (0, -12)

N130 F100 Z-15 Movimentação a 100 mm/min para (-15, -12)

N140 X-4 Movimentação a 100 mm/min para (-15, -16)

N150 G00 G90 X-9 Z25 Modo absoluto, posicionamento rápido em (10, -25)

N160 M02 Fim de programa

A tela do programa após a operação pode ser vista na Figura 5.1.

52

Figura 5.1. Tela do programa após o teste 1.

5.2. Teste 2 – operação remota

O código G utilizado neste teste é um programa que usina um chanfro

de 45° em um cilindro e em seguida afasta a ferramenta da peça. O ponto

inicial, desta vez, foi a posição (10, -10).

N010 G00 F100 S300 M03 Seleção de velocidades de avanço e rotação

N020 X-25 Z10 Posicionamento rápido em (10, -25)

N030 G91 Z-9 X11 Modo incremental, posicionamento rápido em (1, -

14)

N040 G01 Z-1 Movimentação a 100 mm/min para (0, -14)

N050 Z-1 X-1 Movimentação a 100 mm/min para (-1, -15)

N060 G00 Z2 Posicionamento rápido em (1, -15)

N070 X2 Posicionamento rápido em (1, -13)

N080 G01 Z-1 Movimentação a 100 mm/min para (0, -13)

N090 Z-2 X-2 Movimentação a 100 mm/min para (-2, -15)

N100 G00 Z3 Posicionamento rápido em (1, -15)

N110 X3 Posicionamento rápido em (1, -12)

N120 G01 Z-1 Movimentação a 100 mm/min para (0, -12)

53

N130 Z-3 X-3 Movimentação a 100 mm/min para (-3, -15)

N140 G00 Z4 Posicionamento rápido em (1, -15)

N150 X4 Posicionamento rápido em (1, -11)

N160 G01 Z-1 Movimentação a 100 mm/min para (0, -11)

N170 Z-4 X-4 Movimentação a 100 mm/min para (-4, -15)

N180 G00 G90 X-25 Z10 Modo absoluto, posicionamento rápido em (10, -25)

N190 M02 Fim de programa

Após a operação, obteve-se o desenho do trajeto da ferramenta que

está mostrado na Figura 5.2.

Figura 5.2. Tela da página web após o teste 2.

54

6. Conclusões

A ideia de um sistema que permita a simulação de um processo de

usinagem, possibilitando redução de custos e tempo gasto para testes, e a tele-

operação de um equipamento CNC, considerando o contexto de redução dos

ciclos de inovação e acirrada competição internacional, foi o que motivou este

trabalho.

Tendo isso em mente, foi proposto um sistema computacional capaz de

interpretar código G, verificar a validade dos comandos, simular o processo de

usinagem e exibir o trajeto percorrido pela ferramenta durante a operação.

Para atingir este objetivo, foi necessário o levantamento de informações

relevantes ao desenvolvimento do projeto. Com base na teoria de Manufatura

Virtual, Web Services e modelagem de sistemas em UML, foi possível criar um

software cujo comportamento procura se aproximar do observado em

máquinas CNC reais, inclusive no que diz respeito às limitações do

equipamento. A principal ferramenta utilizada foi o Microsoft Visual Studio

2010, que possibilitou o desenvolvimento completo da solução, inclusive o

bloco responsável pelo acesso via web.

Os testes realizados provam que o objetivo foi alcançado, pois tanto na

operação local quanto na remota foi observado que o código G foi

corretamente interpretado e o sistema exibiu graficamente o percurso do

equipamento. Além disso, nenhuma funcionalidade apresentou problema.

Foi identificado que há uma limitação da velocidade de avanço da

ferramenta, atrelada à velocidade de processamento do computador em que o

programa está sendo executado, já que há muitos cálculos envolvidos na

interpolação linear e no desenho da trajetória.

Os principais pontos de melhoria são:

 Aumentar o número de comandos G reconhecidos pelo

programa;

 Melhorar a qualidade da exibição da imagem na operação

remota;

55

 Aprimorar a visualização da usinagem, possibilitando que o

usuário veja a forma da peça sendo alterada;

 Fazer melhorias gerais na aparência da interface gráfica;

56

Referências Bibliográficas

ALTINTAS, Y. Manufacturing Automation. [S.l.]: Cambridge University

Press, 2000.

ALTOVA. Web services: Benefits, challenges and a unique, visual

development solution. [S.l.], p. 21. 2006.

BANERJEE, P.; ZETU, D. Virtual Manufacturing. New York: John Wiley

& Sons, 2001.

BELL, D. et al. A Framework for Deriving Semantic Web Services.

Springer Science and Business Media online, 2006.

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. The Unified Modeling

Language User Guide. 2. ed. [S.l.]: Addison-Weasley, 2005.

BRUNE, O. Comando numérico computadorizado. Mecatrônica Atual,

2008. Disponivel em: <http://www.mecatronicaatual.com.br/secoes/leitura/291>.

Acesso em: 29 jun. 2010.

CERAMI, E. Web Services Essentials - Distributed Applications with

XML-RPC, SOAP, UDDI & WSDL. 1ª Edição. ed. [S.l.]: O'Reilly, 2002.

FLANAGAN, C. The Bresenham Line-Drawing Algorithm. Department of

Computer Science - University of Helsinki, 1996. Disponivel em:

<http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html>. Acesso em:

21 nov. 2010.

KIMURA, F. Product and Process Modeling as aKernel for Virtual

Manufacturing Environment. Annals of the CIRP, v. 4, p. 147-150, fev. 1993.

LAWRENCE ASSOCIATES INC. Virtual manufacturing user workshop.

Technical Report, 1994. Disponivel em:

<http://www.isr.umd.edu/Labs/CIM/vm/lai1/final6.html>. Acesso em: 14 abr.

2010.

LEE, K. I.; NOH, S. D. Virtual Manufacturing System - A Test-Bed Of

Engineering Activities. CIRP Annals - Manufacturing Technology, v. 46, p.

347-350, 1997.

LEE, W. B.; CHEUNG, C. F.; LI, J. G. Applications of virtual

manufacturing in materials processing. Journal of Materials Processing

Technology, v. 113, p. 416-423, 2001.

57

MOLLICA, M. F. Simulador de Torno CNC. Trabalho de Conclusão de

Curso. Escola Politécnica da Universidade de São Paulo. São Paulo, p. 50.

2001.

MOYNE, J. R.; TILBURY, D. M. The Emergence of Industrial Control

Networks for Manufacturing Control, Diagnostics, and Safety Data.

Proceedings of the IEEE , v. 95, p. 29 - 47 , jan. 2007.

MUNDO CNC. Conceitos Básicos. Mundo CNC, 2008. Disponivel em:

<http://www.mundocnc.com.br/basic4.php>. Acesso em: 29 julho 2010.

ONOSATO, M.; IWATA, K. Development of a Virtual Manufacturing

System by Integrating Product Models and Factory Models. Annals of the

CIRP, v. 4, fev. 1993.

PORTO, A. J.; PALMA, J. G. Fábrica do futuro: entenda hoje como sua

indústria vai ser amanhã. In: ______ Manufatura Virtual. [S.l.]: Banas, 2000.

Cap. 10, p. 89-97.

SOUZA, M. C. F. et al. Manufatura Virtual: Conceituação e Desafios.

Gestão & Produção, v. 9, p. 297-312, dez. 2002.

STOETERAU, R. L. Introdução aos processos de usinagem.

Laboratório de Mecânica de Precisão, 2007. Disponivel em:

<http://www.lmp.ufsc.br/disciplinas/emc5240/Aula-01-U-2007-1-

Introducao.pdf>. Acesso em: 21 Julho 2010.

STOETERAU, R. L. Introdução aos processos de usinagem.

Laboratório de Mecânica de Precisão. Disponivel em:

<http://www.lmp.ufsc.br/>. Acesso em: 21 Julho 2010.

W3C RECOMMENDATION. SOAP Version 1.2 Part 1: Messaging

Framework (Second Edition). World Wide Web Consortium, 2007. Disponivel

em: <http://www.w3.org/TR/soap12-part1/>. Acesso em: 15 jun. 2010.

W3C RECOMMENDATION. Web Services Description Language

(WSDL) Version 2.0 Part 1: Core Language. World Wide Web Consortium,

2007. Disponivel em: <http://www.w3.org/TR/wsdl20/>. Acesso em: 15 jun.

2010.

W3C WORKING GROUP NOTE. Web Services Architecture. World

Wide Web Consortium, 2004. Disponivel em: <http://www.w3.org/TR/ws-

arch/>. Acesso em: 15 jun. 2010.

